Lower and upper order of harmonic mappings
نویسندگان
چکیده
In this paper, we define both the upper and lower order of a sense-preserving harmonic mapping in D . We generalize to case some known results about holomorphic functions with positive show consequences function having finite order. addition, improve related result when there is equality distortion theorem for mappings Some examples are provided illustrate developed theory.
منابع مشابه
Harmonic Mappings Related to Starlike Function of Complex Order Α
Let SH be the class of harmonic mappings defined by SH = { f = h(z) + g(z) | h(z) = z + ∞ ∑ n=2 anz , g(z) = ∞ ∑
متن کاملA lower estimate of harmonic functions
We shall give a lower estimate of harmonic functions of order greater than one in a half space, which generalize the result obtained by B. Ya. Levin in a half plane.
متن کاملHarmonic Mappings of Spheres
Introduction and statement of results. This announcement describes an elementary method of constructing harmonic maps in some cases not covered by the general existence theory. Recall that given smooth Riemannian manifolds N and M, with N compact, then the energy functional E:H(N,M) -> R is defined on a suitable manifold of maps H(iV, M ) and is given by E{ f ) = \ \n \df | . A map ƒ is said to...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولUpper and lower bounds of symmetric division deg index
Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2022
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2021.125837